
A Novel Tool for Multi-Gravity Assist Trajectory Optimization

Tom Ginsberg, David Black, Bereket Guta, Jeremy Wong, and Calum Macdonald
University of British Columbia

Applications of Classical Mechanics
Professor: Kris Sigurdson

(Dated: April 2019)

Space is the final frontier, and exploring its vast reaches is one of the greatest challenges
mankind has undertaken. However, moving around in our Solar System requires frequent,
large velocity changes, which in turn require expensive and heavy fuel, rendering the whole
process almost economically infeasible. Because of these costs, it is advantageous to explore
more efficient methods of moving around the cosmos. In this project, one such method
of maneuvering in space, called a gravity assist, will be examined. Gravity assists allow
a spacecraft to use a planet’s kinetic energy to its advantage, obtaining desired velocities
by interacting with the planet’s gravitational field rather than wasting fuel to thrust. Here
we treat the objective of flying from one planet to another as an optimization problem
and search for the spacecraft trajectory involving any number of gravitational assists that
minimizes the required fuel for a given start and destination planet. To determine the
optimal trajectory, software was be developed, incorporating a solver of Lambert’s Problem,
a Genetic Algorithm, and a fitness function for each planetary interaction, as well as an
animation to visualize the trajectory. The spacecraft is assumed to use a chemical engine, so
its maneuvers can be treated as impulsive. In between maneuvers, the spacecraft follows the
natural conic section trajectory only under the influence of the sun’s gravity. The spacecraft’s
overall trajectory can be formed by patching together these conical orbits from the different
phases of the transfer.

Contents

I. INTRODUCTION 2

II. PROBLEM STATEMENT 2

III. ASSUMPTIONS AND SIMPLIFICATIONS 3

IV. LAMBERT’S PROBLEM 4

V. MODELING TRAJECTORIES 5

VI. THE FITNESS FUNCTION 6

VII. GENETIC ALGORITHM 7

VIII. SOFTWARE 9

IX. ANALYSIS 9

X. CONCLUSIONS 11

XI. REFERENCES 12

2

I. INTRODUCTION

In the 1970’s, Voyager 1 brought its payload into
space at a cost of close to $1M per kg. While
this price has dropped substantially with im-
proved technology, the cost of bringing 1kg of
payload into space is still approximately $10k
- $20k. Considering the huge amounts of fuel
required for long distance interplanetary travel,
this makes any such missions prohibitively ex-
pensive. In the past we have therefore only sent
light probes and spacecraft with no intention of
returning or carrying payloads such as people
to other planets. In order to expand the hori-
zons of human space travel, it is essential to ex-
plore more efficient methods of flight. A partic-
ularly useful and promising technique is called
the gravitational assist.
In a gravity assist, a spacecraft enters a planet’s
sphere of influence (SOI) at a certain velocity
relative to the planet. Depending on the mag-
nitude of the velocity and how close it takes the
spacecraft to the surface of the planet, the space-
craft will move through a certain hyperbolic or-
bit around the planet, changing its direction but
not the magnitude of its velocity relative to the
planet. However, in the sun’s reference frame the
outgoing velocity of the spacecraft is now essen-
tially the magnitude of the incoming velocity in
the new direction plus the velocity of the planet.
Though this gain in energy may seem to violate
conservation laws, one must consider the planet-
spacecraft system as a whole, in which case it
becomes apparent that the spacecraft is tapping
into the planet’s orbital energy to achieve its ve-
locity change. Since the spacecraft is small rel-
ative to the planet, this change is negligible for
the planet but can have a great impact on the
spacecraft.

II. PROBLEM STATEMENT

By making specific combinations of gravity as-
sists with various planets it is possible for a
spacecraft to attain any number of interesting
and beneficial trajectories to efficiently travel
from one planet to another. However, without
further constraints this problem has an enor-
mous solution space. In order to find the best

FIG. 1. A sample trajectory to comet 67P generated
by the MGA optimizer

possible trajectory in terms of fuel consumption,
one would have to consider which planets to ren-
dezvous with, the times at which these maneu-
vers should occur, exactly where and at what an-
gle to enter each planet’s sphere of influence, and
when to thrust while inside the planet’s SOI.
The solution to the Muti-Gravity Assist (MGA)
problem is given by two vectors each of dimen-
sion N + 2 where N is the number of flyby plan-
ets. The first vector ~P characterizes the order of
the planetary flybys; it must always start with
Earth and end with the destination object.

~P = [Earth, . . . N flyby planets . . . , Destination]

The second vector indicates the time at which
each planetary encounter occurs.

~t = [tearth, tflyby 1 . . . , tflyby N , tdestination]

We will soon see by the application of Lambert’s
equation that these two vectors uniquely charac-
terise any interplanetary trajectory.
With this in mind, we set out to create a gen-
eral tool to find the best possible trajectory be-
tween any two planets, approaching the design
of the trajectory through the lens of an opti-
mization problem. In order to do this, cer-
tain assumptions and simplifications have to be
made to reduce the dimensionality of our solu-
tion space, as mentioned above. We then pro-
pose a model for characterizing trajectories in a

3

physically representative yet sufficiently simplis-
tic manner which allows them to evolve through
a Genetic Algorithm into a final, optimal trajec-
tory.

III. ASSUMPTIONS AND
SIMPLIFICATIONS

The first step in modeling trajectories within the
Solar System is logically to make a model of the
Solar System itself. In doing this it is impor-
tant not only to represent the Solar System in
a realistic manner, but especially to do so in a
way that facilitates the later addition of space-
craft trajectories into the model. For example,
given that the gravity assists will occur at spe-
cific times and are dependent on the planets’ ve-
locities, it is important to be able to find each
planet’s velocity and position at a given time
very efficiently. Thus numerical integration from
some initial condition to find the planets’ posi-
tions is for instance not a good method.

Longitude of ascending node

Argument of periapsis

True anomaly

Inclination

Ascending node

Reference
direction

Celestial body

Plane of reference

Orbit

Ω
ω

ν

i

☊

و

FIG. 2. The Anatomy of a Celestial Orbit (from
Wikipedia)

Instead we started off by calculating the exact
ephemerides of the planets based on data ob-
tained from JPL’s HORIZONS System. The
data includes a number of parameters and their
time derivatives for each planet, most of which
are shown in figure 2. Using the time derivatives,
which are approximately constant within a rea-
sonable time frame of about a century before and
after J2000, it is possible to update the param-
eters to their value at a given time past J2000.

After some simple calculations with these values,
one can find the Eccentric Anomaly of a planet
and then use Newton’s Method to quickly find
the Mean Anomaly. These two ’anomalies’ are
simply angles that describe a planet’s position
along its elliptical orbit.
Using the Mean Anomaly, one can find the
planet’s position in a heliocentric coordinate sys-
tem with the P axis pointing to the perihelion.
We obtain:

P = a(cosE − ε);

Q = a
√

1− ε2 sinE

Where a is the semimajor axis of the planet’s
orbit, E is the mean anomaly, and ε is the ec-
centricity. We then rotate our coordinate system
by the orbit’s argument of the periapsis, inclina-
tion angle, and longitude of the ascending node
to obtain the final 3-dimensional planetary or-
bits in a single (x, y) coordinate system. This is
done in 3 steps:

Rotation by the argument of the periapsis (ω)

x1 = P cosω −Q sinω

y1 = P sinω +Q cosω

Rotation by the inclination angle (i)

x2 = x1 cos i

z2 = x1 sin i

Rotation by longitude of ascending node (Ω)

xfinal = x2 cos Ω− y2 sin Ω

yfinal = x2 sin Ω + y2 cos Ω

zfinal = z2

The orbits found using this method are shown
in figure 3.
Although this method is very fast and accurate,
there are some issues with integrating it into a

4

FIG. 3. Actual Orbits using JPL Data

trajectory optimizer. These issues are twofold.
First, in terms of animation it is much easier
to show the planets moving in circular orbits.
In fact, if we look at the eccentricities of the
orbits we see that they are all very close to 0,
meaning they are all essentially circular. This is
illustrated in figure 4. Thus we can make this
approximation without losing much accuracy.

�������

-1.5-1.0-0.5 0.5 1.0 1.5
AU

-1.5

-1.0

-0.5

0.5

1.0

1.5

AU
Inner Solar System

Mercury

Venus

Earth

Mars -30 -20 -10 10 20 30
AU

-30

-20

-10

10

20

30

AU
Outer Solar System

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

The Solar System

FIG. 4. Low Eccentricity of Planetary Orbits

The second simplification we can make here is
related to another assumption which is central
to the patched conic approximation described in
section V. Namely, within the Sphere of Influ-
ence of each planet, the spacecraft feels only that
planet’s gravitational pull. This simplifies the
n-body problem to a 2-body one at each planet
without sacrificing accuracy. In order to calcu-
late the gravity assist then, the algorithm must
choose the optimal point and direction in which
to enter each planet’s sphere. During the calcu-
lation of the orbits plotted in Figure 2, we ro-
tated each ellipse by an inclination angle to put

in in 3 dimensions. However, every angle of in-
clination is around 2◦ or less, meaning the plan-
ets essential orbit in a single plane. Thus, if we
simplify the model to 2D, we immediately mas-
sively simplify the problem of choosing a point
and direction in 3D on a sphere at each planet
to choosing a point in 2D on a circle.
The only planet that deviates from these two
approximations is Pluto, which lies 17◦ outside
the plane and has by far the largest eccentric-
ity. Mercury, though not perfect, is close enough
to the approximation, and all other planets are
nearly perfect. We therefore eliminate Pluto
from the project, with the justification that it
is, after all, just a dwarf planet.
With a working model of the solar system in
place, designed to allow for easy integration of
a trajectory optimizer, we can now move on to
calculating some trajectories.

IV. LAMBERT’S PROBLEM

Before we can understand how to model inter-
planetary trajectories we must first revisit one
of the most famous problems in celestial me-
chanics. Posed originally in the 18th century by
Johann Heinrich Lambert the formal problem
statement is the following.

Given two different times t1, t2 and two
position vectors ~r1, ~r2, find the solution ~r(t)
satisfying the differential equation with the
given boundary conditions

~̈r = −µ · r̂
r2

~r (t1) = ~r1 and ~r (t2) = ~r2

To solve this problem we use a clever combina-
tion of math and physics. We start with Kepler’s
equation which relates the time of flight to the
relative eccentric anomalies E, the gravitational
parameter µ, the semi-major axis a and the or-
bital eccentricity ε.√

µ

a3
∆t = E(t)

∣∣∣tf
t0
− ε sinE(t)

∣∣∣tf
t0

The transition from Kepler’s equation to Lam-
bert’s equation is purely a challenge in geometry
whose full derivation is more suited for a text-

5

Launch Speed: 141967.29733 km/h

Time of Flight: 3 yr

FIG. 5. An example solution to Lambert’s Problem
(LP) is shown here. Given an exact 3 year time in-
terval and set initial and final positions solving LP
gives the exact departure velocity required to reach
comet 67P. However, lacking any gravity assists, this
path is far from optimal.

book than this report. Only the final form and
relevant physics will be presented. Lambert’s
equation gives an elegant relationship between
time of flight and orbital parameters:

∆t =

√
a3

µ
(α− β − (sinα− sinβ))

Where

sin
(α

2

)
=

√
s

2a
and sin

(
β

2

)
=

√
s− c
2a

The constants c and s are called the chord and
semi-perimeter of the transfer.

c = ‖~r1 − ~r2‖ s =
c+ r1 + r2

2

Lambert’s equation shows that the transfer time
of a body moving between two points on a conic
trajectory is a function only of the sum of the
distances of the two points from the origin of
the force, the linear distance between the points,
and the semi-major axis a of the conic. Once we
have a it is a straight forward energy calcula-
tion to compute the initial velocity required for
the transfer. We will forgo writing out the final
formula to avoid defining four more geometric
constant first.
Recapping, using only geometry and physics a
highly non-linear coupled system of differential
equations has turned into a root finding problem.

A simple bisection algorithm can be written to
find which value of a yields the specified value of
∆t. Bisection is easy to implement but unfortu-
nately very slow, so for this project we have used
a new, unpublished, and extremely fast algo-
rithm created by the European Space Agency’s
(ESA) Advanced Concepts Team which utilizes
a transformation that deforms the time of flight
curves into lines, thus allowing uniform, consis-
tent convergence properties for all possible ge-
ometries. With the speed and efficiency of this
algorithm, a standard laptop running 8 parallel
threads can solve Lambert’s Problem millions of
times in a few seconds. We will later see why
this ability is crucial in order to solve the MGA
problem.

V. MODELING TRAJECTORIES

So far we have a working Solar System and a
method to calculate the spacecraft’s path be-
tween 2 planets. However, what we are looking
to model is a trajectory encompassing not only
multiple paths between planets, but also inter-
actions with the planets.
As mentioned briefly in section II, trajectories
can be described uniquely by two vectors, each
of dimension N + 2 where N is the number of
flyby planets. The first vector ~P characterizes
the order of the planetary flybys; it must always
start with Earth and end with the destination
object.

~P = [Earth, . . . N flyby planets . . . , Destination]

The second vector indicates the time at which
each planetary encounter occurs.

~t = [tearth, tflyby 1 . . . , tflyby N , tdestination]

These vectors uniquely describe an interplane-
tary trajectory because they also form the in-
puts to our Lambert Solver, and thus provide
not only which planets we meet and when, but
also the the path the spacecraft follows between
the planets.

Since we assume no thrust during the inter-
planetary travel time - an assumption that is
also important in solving Lambert’s Problem -
we model any abrupt changes in velocity as oc-

6

FIG. 6. Splitting up the trajectories in this way, a
complex n-body problem turns into N gravity assist
problems and N + 1 conic sections calculated using
the Lambert Solver.

curring solely due to either the gravity assists or
the impulses delivered by the spacecraft during
the gravity assists. These are dictated by the
required incoming and outgoing velocities of the
spacecraft at each planet, which are in turn pro-
vided by the solutions to the Lambert Problem.
Thus, in calculating the efficiency of a trajec-
tory, we have to look at the outputs of the Lam-
bert Solver to ascertain how much fuel must be
burned during the planetary interactions.
Given the efficiency of a trajectory, the algo-
rithm can try to improve it by either visiting
different planets or changing the times of the ma-
neuvers. Altering either one of these parameters
causes the Lambert Solver to output different ve-
locities, which changes what the spacecraft has
to do during the assist maneuvers. Ultimately,
the algorithm tries to find the best possible ~P
and ~t to minimize the amount of fuel the space-
craft has to burn and instead maximize the work
that the gravity assists do for the spacecraft.
The whole process is illustrated in figure 6.

VI. THE FITNESS FUNCTION

In order to perform this optimization, each tra-
jectory must be given an efficiency score based
on how much fuel it burns. Since we are using
a Genetic Algorithm for the optimization, this
score is found using a so-called Fitness Function.

One of the most important aspects of this
project is finding a fitness function that repre-
sents the reality of a gravity assist and gives
high scores for assists that most benefit the
efficiency of the trajectory. At the same time, it
should not actually calculate the full physics of
a gravity assist. This would require optimizing
not only the two vectors mentioned in the pre-
vious section, but also a vector of positions of
entry into each planet’s sphere of influence and
of impact parameters for each maneuver. Since
both of the latter vectors sample from infinite
spaces of possible values, this would increase the
complexity of the algorithm exponentially and
is unfortunately simply outside the scope of this
project given the time and resource constraints.

As we cannot exactly model the physics, we
adopted an alternate strategy. We first stud-
ied the gravity assist problem - what makes a
given maneuver fuel efficient, and how we can
gain the desired velocity and direction from an
assist. Based on this, we created a fitness func-
tion that takes the spacecraft’s incoming and
outgoing velocities as well as the planet’s veloc-
ity and calculates normalized values of fitness
based on 4 important criteria. The total fitness
is the weighted sum of the 4 criteria scores, with
the weights experimentally derived by running
the algorithm and comparing it with known op-
timal trajectories given by the ESA, trajectories
calculated by hand, and trajectories selected by
real spacecraft in the past. Finally, we ran the
algorithm on new combinations of planets and
validated the realism of the assist maneuvers us-
ing hand calculations. In the end, though not
entirely physical, the fitness function provides
excellent and realistic trajectories.

Let us now look in detail at what this fitness
function actually entails. Figure 7 will be helpful
for this part. The first of the 4 criteria is a score
based on the angles of incidence and ’diffraction’
of the spacecraft relative to the line spanned by
the planet’s velocity vector. These are shown as
φin and φout in the diagram. In general, dur-
ing a celestial interaction with no applied thrust
and sufficient energy that the orbit is unbounded
(i.e. usually hyperbolic), φin will approximately
equal φout. Therefore, any change in this angle
requires fuel and results in a negative angular

7

FIG. 7. The anatomy of a gravitational assist. rp is
the impact parameter, ~vin and ~vout the incoming and
outgoing spacecraft velocities, and ~vp is the planet
velocity

fitness score given by:

Fφ =
~vin · ~vout
|~vin||~vout|

− 1

The dot product is normalized by the magni-
tudes of the two vectors so that this term only
scores the angle and is unaffected by the ampli-
tudes. Note also that for this term as well as
the others, corner cases are considered and con-
straints placed upon the values in Python code
to ensure best possible performance.
The second criterion is also related to the in-
coming and outgoing angles, but not to their
relative change. Gravity assists most effectively
impart energy upon the spacecraft if the final
and initial spacecraft velocities are not opposed
to the planet’s velocity. In other words, the dot
products of the spacecraft and planet velocities
should positive and as large as possible. This is
expressed mathematically as:

Fv =
1

2

(
~vin · ~vp
|~vin||~vp|

+
~vout · ~vp
|~vout||~vp|

)
Again, this term is normalized to a value be-
tween 0 and 1 so it can easily be weighted and
added to the other terms.
The third criterion is perhaps the most obvi-
ous and directly measures how much thrust the

spacecraft has to give. As explained before, the
magnitude of the spacecraft’s velocity relative to
the planet should not change during the maneu-
ver. Hence, any relative change in velocity is due
to a thrust impulse and is negative in our fitness
function:

FT =

∣∣∣∣1− |~vout − ~vp||~vin − ~vp|

∣∣∣∣
The final criterion, Ft, is actually related to
time rather than fuel consumption. It is sim-
ply the total time it takes from the start planet
to the destination. The idea here is that a longer
mission will require more supplies and therefore
more weight to carry. A beneficial side effect of
this term is that it tends to prioritize slightly
simpler, less convoluted trajectories, which are
perhaps more realistic and achievable.
For each gravitational assist manoeuvre, we add
the 4 terms in a weighted sum:

Fi = cφFφ + cvFv + cTFT + ctFt

The fitness of each interaction is then averaged
to find the final fitness of the trajectory:

F =
1

N

N∑
i=1

Fi

VII. GENETIC ALGORITHM

We now have a model of the Solar System and
any arbitrary spacecraft trajectory in it, as well
as a fitness function that tells us the effective-
ness of the trajectory. What remains to be done
is to somehow use this fitness function to find
the optimal trajectory from one planet to an-
other. With the physics done, this becomes an
optimization problem. Specifically, it is a rela-
tively unconstrained problem with a vast solu-
tion space, so an effective method is the Genetic
Algorithm.
The Genetic Algorithm is a very natural and in-
tuitive algorithm as it closely follows Darwin’s
evolutionary theories. We start with a popula-
tion of randomly generated individuals - in our
case, 160 random trajectories, which are split
into 8 groups of 20. These groups are called
islands and represent isolated populations that

8

will evolve separately in parallel. The benefits of
such a split will be explained later. Each individ-
ual is characterised by its chromosomes, which
in this case are the two vectors used to represent
a trajectory. The different values found in each
individual’s vectors are called that individual’s
alleles and determine how fit the individual will
be.

FIG. 8. Average island fitness over 100 generations.
In all of our trials, the solutions converged to a max-
imum after at most 100 generations, allowing for fast
runtimes.

The algorithm simulates evolution by repeating
the following steps until it converges to an opti-
mum:

1. Calculate the fitness of each individual in
the population using the fitness function

2. Eliminate the least fit individuals

3. Evolve the most fit individuals using mu-
tation and crossover. In mutation, ran-
dom changes are made to the individu-
als’ alleles, while in crossover, also known
as recombination, two fit individuals’ al-
leles are combined into a new trajectory.
This is completely analogous to how bio-
logical populations evolve. At each step
the mutations and crossovers occur with a
given probability depending on the algo-
rithm used.

4. The new generation of improved individ-
uals restarts the cycle. The fitness of a
series of generations is plotted in figure 8.

The specific implementation of the Genetic Al-
gorithm we used is the PyGMO library from the

ESA’s Advanced Concepts Team. This has a few
interesting characteristics.
First, this algorithm evolves each individual
island in parallel, meaning it is very fast.
Combined with our exceptionally fast Lambert
Solver, this allows us to optimize entire new tra-
jectories in around 10 seconds. Another benefit
of the concurrency of the algorithm is that it is
very effective for finding global maxima. Even if
one or more islands become stuck at a local max-
imum, the stochastic nature of the mutations in
addition to the isolation of each island invariably
allow the algorithm to find something close to
the global maximum of the solution space. This
is illustrated well in figure 9.

FIG. 9. Average fitness of each island evolving over
500 generations. This displays the ability of the al-
gorithm to find near global maxima even when some
populations are held up at a local maximum. Here,
the island in green achieves a high fitness score while
the others converge to a lower value.

Another feature of the PyGMO library is that
it performs some inter-island ’migration’ of in-
dividuals, which adds more randomness and in-
creases the probability of achieving a global max-
imum. The migration is carried out through the
Barabási-Albert model.
Finally, the overall algorithm used to run the
Genetic Algorithm is called Self-Adaptive Differ-
ential Evolution. This essentially dictates how
likely mutation and cross-over are to occur and
how they are actually implemented. It decides
these parameters based on the system it is try-
ing to optimize, hence the name self-adaptive.
This allows the Genetic Algorithm to be run ef-
fectively without spending huge amounts of time
trying to optimize parameters like mutation fre-
quency for our specific application.

9

VIII. SOFTWARE

As a part of this project, a fully 3D inter-
active simulation was developed in order to
best present our work. The application, freely
available on GitHub here, allows for the real-
time generation of new interplanetary trajecto-
ries that can be viewed and controlled dynami-
cally via mouse and keyboard. Many sample tra-
jectories are also provided to spare the user from
building the full backend (instructions provided
in README). The application, built in process-
ing, launches with the following GUI, allowing
the user to select their destination, or chose a
pre-generated sample.

FIG. 10. Application GUI

After selecting an option, pressing the enter key
advances the program into the simulator, which
may take a few seconds to a few minutes de-
pending on the chosen target as well as system
threads and processing speed. Once the sim-
ulator starts the user will be able to view the
trajectory progress and is given full speed con-
trol using the left and right arrow keys. Mouse
control allows the user the smoothly pan around
the camera to view the trajectory from differ-
ent angles. At any point, the enter key can be
pressed to restart the current trajectory or the
application can be quit and reopened to go back
to the GUI.

The inner workings of the software are
slightly complicated and require many depen-
dencies. Upon selection of a non-demo trajec-
tory, a new Python background process will be
started and is passed the name of the planet it
must reach. It will then chose random orbital

FIG. 11. Screenshot of simulator

phases for all of the planets in order to increase
the variety of generated trajectories. Then the
optimization will begin. The evolutionary algo-
rithm will evolve 8 populations of 20 in parallel
for 100 generations using methods described in
this paper. Upon selection of the optimal solu-
tion, a text file will be generated containing the
initial velocities of each leg, and the encounter
times. Next, a new Mathematica process will be
called which numerically solves the Kepler ini-
tial value problem on each leg using an Explicit
Runge Kutta Method with varying time step to
ensure convergence and accuracy. The numer-
ical solution is further enhanced using Hermite
Interpolation between each time step. Next, the
trajectory location every 1

100 years is written to
a CSV file. This file is read inside processing
and drawn using cubic splines. In order to allow
an arbitrary program time step, further linear
interpolation is done between data points when
the animation time falls out of sync with the
trajectory data.

IX. ANALYSIS

With this fully functional trajectory optimizer in
hand, the question of whether it is actually ac-
curate remains. To get a better sense of the effi-
ciency of the gravitational encounters in a gener-
ated trajectory, we can study a plot (12) of solar
distance and velocity throughout the trajectory
to comet 67P. An interesting conclusion from fig-
ure 12 is that the optimizer has chosen to engage
in gravity assists near perigee, a surely effective
heuristic as perigee is the location of maximum

https://github.com/tomginsberg/GAToptimization

10

2 4 6 8 10 12
Times (Years)0

5

10

15

20

Distance from Sun (AU) ~ Blue

Velocity (AU/Year) ~ Orange

FIG. 12. Heliocentric distance and velocity over the
full trajectory to comet 67P. Dotted lines indicate
encounter times

velocity. This heuristic was not explicit within
the code. Next we observe figure 13, a plot of
the specific orbital energy over the trajectory, so
we can observe the energetic effects of each en-
counter. We notice that the first encounter leads

2 4 6 8 10 12
Years of Flight

-30

-25

-20

-15

-10

-5

ϵ au2/yr2

FIG. 13. Specific orbital energy as a function of time.
Dotted lines show energy changes during encounters.

to an increase in energy, while the next two re-
sult in a drop. A drop in energy, while perhaps
globally optimal, should be locally un-optimal.
Hence, an effective validation of the fitness func-
tion will be to observe if the calculated scores for
the second and third assist are less optimal than
the first.
As a result of the oversimplified fitness func-
tion, the optimizer was unable to compute exact
thrust factors for each assist. Thus, to validate
the simplified approach, the trajectory to 67P
was studied in further depth. Each assist was
solved numerically for different impact parame-
ters, and optimized for the smallest difference in
planet frame velocities. This method provides an
accurate measure of of the thrust correction fac-

Δϕ = 5.00156°

Δν2 = 2.46149

FIG. 14. Mars assist on trajectory to 67P

tor at each leg by computing the square of the
difference of the required velocity for the next
Lambert arc and the velocity naturally produced
by the encounter.
Figures 14-17 show the first three gravity assists

on the journey to 67P. Black arrows represent in-
coming velocities into the SOI, blue arrows show
the natural output velocity leaving the SOI, and
red arrows show targeted velocities required for
the next Lambert arc. All velocities are taken in
the planets frame of rest. Additionally a scale
black dot, and dotted circle are drawn to show
the planet and SOI respectively.

Δϕ = 35.708°

Δν2 = 4.93222

FIG. 15. Attempted Earth assist

11

In figure 14 we see a fairly successful assist
that is able to position the craft in line with the
Lambert velocity, differing only by a reasonable
thrust factor.
In figure 15 we see the result of the optimal
impact parameter chosen for the second assist
on Earth. However, looking closer, it is evident
that to achieve this transfer, the craft must
have passed through the planet. This issue was
resolved by adding further constraints, and the
solution is shown in figure 16.

Δϕ = 10.73°

Δν2 = 7.70344

FIG. 16. Earth assist on trajectory to 67P

The final maneuver on Mercury shown in figure
17 seems fairly non-optimal since it requires a
significant burn to correct the velocity.

Δϕ = 3.95357°

Δν2 = 26.6626

FIG. 17. Mercury assist on trajectory to 67P

To complete our analysis we must compare
the thrust factors for each encounter with the
optimization fitness. The result is shown in
figure 18. The fitness function was designed to
output higher scores for more optimal trajec-
tories, however this is incompatible with the
thrust factors as a lower value represents a more
efficient maneuver. To resolve this issue, the
fitness score is shifted down and negated so it
can be plotted alongside the thrust factors for
more accurate comparison.

Assist0

5

10

15

20

25

Score
Fitness Scores (Orange) vs Thrust Factors (Blue)

FIG. 18. Comparing fitness scores with analytic
thrust factors

We see a definite correlation between thrust
factors and fitness scores. Although a clear
issue is shown by the non uniform scaling of the
fitness with the thrust factors, the results are
more then acceptable given the scope of this
project.

X. CONCLUSIONS

Since Galileo first looked at the night sky
through his telescope, exploring the cosmos
has been one of humanity’s greatest challenges
and obsessions. For centuries curiosity and
the desire for knowledge has driven us through
ever-improving technology to reach further into
space. Now we have reached the point where
companies are taking commercial interest in our
Solar System, and the private sector is racing to
make space tourism a reality.
Whatever the motivation behind the explo-
ration, the fact remains that space travel still
faces some fundamental and challenging obsta-
cles. One of the biggest challenges is the exor-
bitant cost of carrying payloads into space due
to fuel and mass limitations. This is especially

12

pertinent as exploration moves more and more
towards carrying people into space and poten-
tially to other planets.
In this project we have proposed an optimization
and physics - based algorithm to take advantage
of the enormous benefits presented by gravity as-
sists in making space travel more efficient. The
algorithm quickly and accurately calculates and
visualizes the optimal trajectory for a spacecraft
leaving from Earth and heading to an arbitrary
planet in our Solar System. The trajectories are
designed iteratively using a Self-Adaptive Dif-
ferential Evolutionary Genetic Algorithm with a
fitness function rooted in the physics of gravity
assists that minimizes fuel usage. The parallel-
running optimization algorithm is paired with a
novel, highly efficient Lambert solver to provide
fast and reliable results.
Given more time and perhaps faster comput-
ers, this project could be expanded to oper-
ate within the almost perfectly accurate solar
system model we introduced initially. Subse-
quently, the genomes of the individuals being
evolved in the Genetic Algorithm could be made
more complex by adding chromosomes describ-
ing the actual gravity assist parameters at each
planet, as described in section VI. The fitness
function could then be updated to calculate ex-
actly the physics of each gravity assist in 3 di-
mensions and provide a realistic value for fuel
consumption. With these few but very difficult
and computationally intense augmentations, our
algorithm would then present a nearly com-
pletely accurate optimization of spacecraft tra-
jectories, ready to be put into action to plan ac-
tual space voyages.
However, while the resulting optimal trajectories
from our simplified algorithm rely upon some as-
sumptions and simplifications such as a planar
Solar System, circular orbits, a patched conic
approximation, and a fitness function that does
not strictly solve the gravity assist problem, we

have shown through hand calculations and vali-
dating examples from sources like JPL and the
ESA that our generated trajectories are accu-
rate and indeed present highly efficient paths to
the destination planets. In addition, through
our intuitive and attractive GUI we can demon-
strate some of the fundamentals of gravity as-
sisted space travel and why this sort of optimiza-
tion is key to the future of space exploration.

XI. REFERENCES

• JPL Ephemeris Data:
https://ssd.jpl.nasa.gov/?planet pos

• PyGMO:
http://esa.github.io/pygmo/

• Qin, A., & Suganthan, P. (2005). Self-
adaptive Differential Evolution Algorithm
for Numerical Optimization. IEEE
Congress on Evolutionary Computation.

• Carnelli, I., Dachwald, B., & Vasile, M.
(2009). Evolutionary Neurocontrol: A
Novel Method for Low-Thrust Gravity-
Assist Trajectory Optimization. Jour-
nal of Guidance, Control, and Dynamics,
32(2), 616-625.

• Vasile, M., Martin, J. M., Masi, L.,
Minisci, E., Epenoy, R., Martinot, V., &
Baig, J. F. (2015). Incremental planning
of multi-gravity assist trajectories. Acta
Astronautica, 115, 407-421.

• Zuo, M., Dai, G., Peng, L., Chen, L.,
Chen, X., & Song, Z. (2016). Global opti-
misation of multiple gravity assist space-
craft trajectories based on search space ex-
ploring and PCA. IEEE Congress on Evo-
lutionary Computation (CEC).

	A Novel Tool for Multi-Gravity Assist Trajectory Optimization
	Abstract
	INTRODUCTION
	PROBLEM STATEMENT
	ASSUMPTIONS AND SIMPLIFICATIONS
	LAMBERT'S PROBLEM
	MODELING TRAJECTORIES
	THE FITNESS FUNCTION
	GENETIC ALGORITHM
	 SOFTWARE
	 ANALYSIS
	 CONCLUSIONS
	 REFERENCES

