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1 Executive Summary

Sponsored by the Engineering Physics Project Lab, we developed an open-source pipeline to facilitate

the task of transferring a motion policy trained in simulation to a real-world robot, minimizing the

barrier-to-entry for hobbyists and researchers. The project includes a two-wheeled robotic platform and

software to deployed on a Nvidia Jetson Nano, with a bill of materials and instructions to build the

robot and train and use policies. We used the platform to investigate reinforcement learning by training

policies to balance the two-wheeled robot in Isaac Gym, a new simulation environment accessible to

hobbyists. We conclude that our platform allows for successful Sim2Real transfer, but does not fully

close the reality gap. We recommend further exploration of reinforcement learning through policies

that execute high-level tasks using the platform we’ve developed.

2 Introduction

2.1 Background

Automatic control theory deals with the general task of developing a policy (aka. “controller”) that

provides a set of inputs into a dynamic system in order to achieve a desired state, using feedback from

sensors to correct for errors. Automatic control methods are heavily integrated with modern informa-

tion and communication systems. Classical techniques, such as Proportional-Integral-Derivative (PID)

and Linear Quadratic Gaussian (LQG), are widely used today [3]. Yet PID, the most popular method,

requires manual tuning while LQG requires an accurate state space model, making them difficult to

tune when hardware is dangerous or expensive to test.

Recent advances in deep learning, enabled by powerful computer hardware and access to large amounts

of simulated data, have reinforcement learning (RL) feasible as an approach to solving complex control

problems. In contrast to classical algorithms, RL allows for parameters to be learned through experi-

ence. Given input observations, RL trains a policy to output actions to control an agent and maximize

a designed reward.

Gym frameworks combine RL with physics simulation to train policies. Due to differences between

simulation and reality (reality gap), domain transfer is not trivial. The problem of taking a policy

trained in simulation and deploying it in reality is called “Sim2Real”.

Policies are often trained to control agents in virtual environments with sparse success deploying these

policies in reality. OpenAI has succeeded in training a robotic hand to manipulate blocks [6], but

it must be noted that they use RL for high-level planning of target joint angles, while low-level PID

control is still used for position control of servos. In this case, the dynamics of the robot are abstracted

away. See Sec. 3.2.1 for discussion of this distinction.

2.2 Problem and Project Objectives

The reality gap is not the only disconnect in Sim2Real; there is a gap in knowledge within the field

as RL researchers are not typically roboticists. A common problem is “Sim2Null”, which refers to RL
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policies trained in simulation without consideration of deployment in the real world. [2]

Our goal is to create a platform to bridge these gaps and demonstrate a successful application of

Sim2Real, by creating a unified software platform for training and deploying policies and an example

robot with enough depth for further exploration. The platform should make it easy for RL researchers

to deploy their policies into the real world, for roboticists to train an RL policy, and for hobbyists to

learn about both ends of the problem.

2.3 Scope and Limitations

Our initial scope was overly broad: create a fully generalizable software platform that allows a user to

train a policy in simulation and deploy this on hardware regardless of their robot.

The first major shift was to split our focus equally on the development of a robotic platform to

demonstrate this capability, resulting in our design of a two-wheeled inverted pendulum (TWIP).

We reduced our scope on the software to focus on making the platform fit our hardware. While

we anticipated potential features that other robots may need and designed our software with these

in mind by including inheritable classes, we decided the user would still have to write their own code

depending on their specific hardware.

2.4 Sponsor

This project is sponsored by the Engineering Physics Project Lab, with the intention of using the

platform to enable future projects. Not only should our project demonstrate a novel application in a

growing field of interest (Sim2Real), it should have educational value for hobbyists and Engineering

Physics students.

3 Discussion

We begin with the requirements of our robotic platform, the type of control we implemented, the theory

on the control and platform, and finish with a discussion on the design of the robot and software.

4



Figure 1: system level diagram showcasing the main components of our solution

3.1 Planning and Considerations

3.1.1 Robotics Platform

The choice for the robotics platform has three major considerations:

The platform must be simple to assemble given a bill of materials and CAD files for custom parts.

A major goal is for hobbyists to be able to reproduce the design, so there must be no parts that are

complex to manufacture, and no expensive machinery needed to assemble the robot.

The dynamics of the robotics platform must be well studied. Significant risk arises from reinforcement

learning and Sim2Real transfer being relatively new methods. A platform that is poorly understood

risks being fundamentally uncontrollable or difficult to reason about. Difficulty to reason about the

dynamics would make it difficult to troubleshoot any issues in the Sim2Real process.

The dynamics of the system need to be interesting. This is difficult to quantify, but an uninter-

esting robot runs the risk of being dismissed by hobbyists as not being worth their time to explore. An

overly simple platform would also be unable to highlight the capabilities of a reinforcement learning

policy.

We chose a TWIP as the robotic platform to satisfy these criteria.

3.1.2 Isaac Gym

While most machine learning is done on GPU, most gyms perform physics simulations on the CPU,

which introduces a bottleneck as many cores are required to simulate multiple robots in parallel. Nvidia’s
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Isaac Gym offers a solution by performing both physics simulation and network training on GPU. The

reduced training times in [4] demonstrate a speedup by 2-3 orders of magnitude. This enables training

on hobbyist-level hardware rather than large server clusters, making Isaac Gym far more accessible for

our target audience.

3.2 Theory

3.2.1 Low-Level Control vs High-Level Planning

Often, robots require a hierarchy of controllers. A distinction should be made between two levels of

control to clarify terminology and firmly categorize the TWIP-balancing problem:

Usually, low-level control directly drives actuators and operates a continuous action space. Exam-

ples include position control of servos to reach a target angle and velocity control of motors to reach

a target RPM.

High-level planning typically has no visibility into the low-level controller; it interfaces with an ab-

straction. It can output either continuous or discrete actions. Examples include motion planners that

generate trajectories for a robot to follow and policies that play discrete games like chess (requiring no

low-level controller).

The delineation isn’t always clear. Trajectory tracking is low-level control even though lower-levelled

controllers drive actuators, because it has to be differentiated from the high-level motion planner which

generates trajectories. For a TWIP, the distinction is also vague as the policy we developed is low-

level enough to be dynamics-sensitive, but doesn’t directly drive the motors. This difference leads to

unique challenges, making the TWIP an effective case study for Sim2Real transfer. We will classify

our TWIP-balancing policy as a low-level controller, while keeping these distinctions in mind.

3.2.2 Reinforcement Learning

The typical RL training process involves four components. As defined by OpenAI, the agent is the

entity to control, such as a robot; the environment, real or simulated, is the world containing the agent;

observations are partial states from the environment received as input into the agent; and actions are

the agent’s output, which allow it to affect the environment. [1] The policy controls the agent, so we

will treat this as the main unit for discussion in place of the agent.

The goal of a RL policy is to maximize a reward function. In an actor-critic model such as Ad-

vantage Actor-Critic (A2C), the policy consists of two networks: an actor takes the observations and

outputs actions; the critic learns a value function, which estimates the expected reward given the ob-

servations and actions. The critic is used only during training; inference requires only the actor. [5]
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Figure 2: Main components of reinforcement learning

While the environment can be the real world, training a policy on hardware can be expensive, time-

consuming, and unsafe. Gyms package a physics simulation engine (taking on the role of the en-

vironment) with a RL training framework to facilitate the training of policies for different tasks. In

simulation, robots can be easily reset upon failure, and the only cost is computation time and power.

Figure 3: Computational flow of actor-critic model in a gym
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3.2.3 Domain Randomization

The main technique for creating robust RL policies is domain randomization. If we can randomly vary

physical parameters in simulation within a range, then the policy should generalize to a real robot with

parameters within this range. Research has shown that domain randomization can also help a policy

handle latency in controller feedback, but recommend against blindly applying domain randomization

to all parameters [9].

3.2.4 Two-Wheeled Inverted Pendulum

Figure 4: Free body diagram of the Two-wheeled inverted pendulum under analysis

The essential components of the TWIP are the wheels, body, and motors. Analysis can be carried out

in two dimensions to reduce the degrees of freedom. The system is actuated by a motor mounted on

the body. The wheels, which are mounted on the shaft of the motor, can rotate with respect to the

body to maintain balance about the vertical axis. This inverted configuration is unstable by design and

is not robust to disturbances without active control.

[7].

The appendix contains a detailed derivation of the dynamics of this system using Newtonian Me-

chanics App. A. The key outcome of the analysis presents the following set of coupled non-linear

differential equations for the angle about the vertical (γ) and the linear distance of the wheel (x) as

shown in Fig. 4.

ẍ =

[
Kt

R
(V −Keψ̇)− bψ̇

]
r −

[
γ̇2 sin(γ)− γ̈ cos(γ)

] mpℓr
2

2[
Iw + (mw +

mp

2
)r2

] (1)

γ̈ =

2

[
Kt

R
(V −Keψ̇)− bψ̇

]
+mpgℓ sin(γ)− ẍmpℓ cos(γ) +mpℓ

2γ̈ cos2(γ)−mpℓ
2γ̇2 sin(γ) cos(γ)

Ip

(2)
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Eq. 1 & Eq. 2 govern the interaction between wheel and body. The parameters for the design presented

in this report are outlined in Tab. 1.

Parameter Value Unit Description

mp 2.271 kg Mass of body

Iw 0.03088119 kgm2 Moment of inertia of body

ℓ 0.188 m Wheel center to body COM distance

mw 0.19 kg Mass of wheel

Iw 0.0004358343 kgm2 Moment of inertia of wheel

r 0.0625 m Radius of wheel

R 2.14 Ω Resistance of motor

Ke 1.07 V s rad−1 Emf constant

Kt 0.611 NmA−1 Torque constant

b 0.03 Nms rad−1 motor viscous friction constant

g 9.81 ms−2 Gravitational acceleration

Table 1: Key parameters for the two-wheeled inverted pendulum designed.

3.2.5 Real-Time Programming

Robotics control requires a fast control loop frequency to quickly adjust to changing dynamics. This

presents issues for an embedded system.

Memory operations can be time-consuming if an accessed address has not yet been loaded into random

access memory (RAM). When this happens, an expensive page fault operation occurs and the processor

attempts to load the next sequence into memory. This can be circumvented by pre-allocating a fixed

amount of memory before the main program runs. Allocating and carefully managing shared memory

buffers to be re-used within the program ensures that memory is used as efficiently as possible.

Embedded systems often communicate with many devices simultaneously. Processes with a high

frequency tend to consume CPU resources, starving essential processes (i.e. a control loop). Most

Unix operating systems schedule processes non-deterministically, and certain processes could wait for-

ever until they are rescheduled. In a real-time system, deadlines are very important: every operation

has to happen at a certain time to keep the whole system running smoothly. A Linux kernel can be

made more deterministic by applying a patch called PREEMPT RT. This patch allows processes to be

scheduled with a higher priority than they normally could be, making deadlines “harder” than on the

standard kernel.
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3.3 Design

3.3.1 Two-Wheeled Inverted Pendulum

As outlined in Sec. 3.1.1, the main criteria for the design is ease of assembly given the bill of materials

and readily obtainable parts. A CAD of the design is shown in Fig. 5. The design consists of a hardboard

frame held by epoxy. This frame provides a durable structure that is resistant to compressional and

torsional loads. The rest of the components are placed on this frame. The motors and wheels are

mounted on the base plate using L-brackets placed near the edges of the TWIP (Fig. 6). The electronics

lie vertically on the front for ease of access. Two battery holders are placed on the sides to supply

power to the motor and Jetson independently. A detailed bill of materials is provided in App. C and a

guide for building the robot is described on our website in App. D.

Figure 5: CAD of the presented robotics platform.

We modelled each part of the TWIP and generated a Unified Robot Description Format file (URDF).

We saw a 0.3kg discrepancy, which is accounted for by domain randomization.

3.3.2 Sensor Integration

To measure wheel velocity and pitch angle, we used rotary encoders included with the Lynxmotion

motors and a MPU-6050 inertial measurement unit (IMU). Measuring wheel velocity can be achieved

by sampling encoder pulses over a period of time NT , and dividing the number of pulses by the sample

time t. This measurement was useful to compare the desired wheel speed against the target speed
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Figure 6: The mounting for the motors on the robotics platform.

outputted by the policy.

ωW = 2π ∗ NT

t
(3)

Measuring the pitch was more difficult. The IMU consists of a gyroscope and an accelerometer,

each giving three separate measurements. The gyroscope measures the rate of change of the Euler

angles (pitch, yaw, and roll), while the accelerometer measured acceleration in the Cartesian directions

(X, Y, and Z). To convert these into a quaternion representation, we used a Madgwick filter (App. B).

The final pitch θ used for control is calculated with Eq. 4 from a quaternion of form (w, x, y, z).

θ = arctan

(
2xw + 2zy

1− 2x2 − 2y2

)
(4)

We noticed that the parameter β had a large impact on the responsiveness of the Madgwick fil-

ter. For large angles (> 5◦) the filter had slow convergence regardless of the magnitude of β, making

angle measurements subject to a large error. However, substituting the Madgwick filter for a comple-

mentary filter made the resulting pitch data noisy in the steady-state (±3◦), causing severe instability

when balancing. We decided to use the Madgwick filter to avoid this instability.

3.3.3 Hardware Integration

To run an RL policy on our TWIP, we chose GPU capabilities as a criterion for computing hardware. In

addition, we needed a device that was lightweight, real-time capable, and well-supported in the robotics

community. We chose the Nvidia Jetson Nano development kit which satisfied all these criteria. We

considered using a Raspberry Pi 4, but determined that the Nano was more flexible for future extension

given its support for CUDA, an API required for many machine learning applications.
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The Jetson Nano runs a customized version of ARM64 Ubuntu. This made development easier,

because many modern tools are supported in this OS. Nvidia has also released a real-time kernel patch

that incorporates the functionality of PREEMPT RT into an easily-installed Debian package. We in-

stalled this for the advantages discussed in Sec. 3.2.5.

In addition to the real-time patch, we had to develop our own custom patch to solve a communi-

cation issue. The IMU communicates with the Jetson via an I2C channel, which was susceptible to

noise from the motors. The motor noise disturbed the digital signal on the I2C channel and altered

the bits, leading to invalid data. To remove errors, the Jetson has a kernel-level instruction to clear

the I2C bus and wait 10 seconds before resuming transmission, resulting in a hangup that locked the

robot into the same action as the pitch measurement couldn’t change. By reducing the wait time from

10 seconds to 10 milliseconds in the kernel, we were able to prevent this hangup from occurring.

3.3.4 Software Design

We wrote our code with modularity in mind. We separated the functionality of our programs into two

main components: the hardware interface, and the controller interface. These two components are

bridged together with ROS2, a commonly used framework in robotics research. The main structure is

shown in Fig. 7.

The hardware interface is responsible for low-level communications between the Jetson and other

electronics. It reads/writes data from/to the IMU and motor drivers and publishes/receives messages

via ROS2 topics. The motor and IMU drivers themselves are ROS2 nodes that can access GPIO, PWM,

and I2C functions on the Jetson board.

The controller interface is responsible for control of the robot. It receives IMU and motor velocity

data, performs inference with a policy, and outputs a target motor velocity. The controller interface

can pre-allocate shared memory to avoid page faults at runtime, and has a state machine to enter a

braking state if the IMU angle exceeds a certain threshold for a certain amount of time (a failure mode

from which our policy cannot recover), allowing the TWIP to kick up to the desired angle.

A memory manager initializes memory buffers and controllers from a configuration file in YAML format.

Rules can be added to the controller to perform arbitrary operations between memory buffers, allowing

for heterogeneous data formats and non-contiguous memory segments to be copied to/from the buffers

reserved for policy inference.
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Figure 7: Code design system level diagram.

3.3.5 TWIP-Balancing Policy

We designed a policy to take in the pitch angle and velocity as observations and output motor velocity

as an action. Velocity control is simple to implement and troubleshoot given a PWM motor driver and

velocity feedback from rotary encoders, making it an accessible choice for hobbyists to perform their

own experiments.

To design a reward function, we must consider the variables we want to maximize or minimize, as

well as the shape of the reward function with respect to these variables. Balancing requires minimizing

the TWIP’s pitch angle from the vertical. Since we did not want the TWIP to constantly move at

full speed, we also want to minimize the TWIP’s action (motor speed). We experimented with a few

different reward functions, including one designed for the cart-pole inverted pendulum included with

Isaac Gym (Eq. 5).

r(θ, v) = 1− θ2 − 0.05|v| (5)

This reward decays quadratically with increasing pitch angle, which is too slow for our TWIP since we

have a smaller range of angles from which we can recover. With this reward, we saw that the TWIP

would often favour staying at a tilt in simulation in order to minimize speed. In the end, we decided

that the reward should decay at least linearly with pitch angle. We settled on a tanh function, which

is linear for small angles, resulting in our final reward function (Eq. 6).

r(θ, v) = 1− tanh 8θ − 0.05 tanh 2|v| (6)

We noticed when deploying our policy in real that the TWIP was not robust except within a small

range of angles. This was partially because the policy performed too well in simulation, reaching
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stability quickly and maintaining the angle within a small range. This made the brunt of its training

experience limited to a small subset of the angles from which we want it to balance. We investigated

a few different methods to solve this: adding random torque perturbations and random orientations

whenever we reset the TWIP in simulation, and reducing the time of each “episode”, which means the

TWIP has less time to reach stability.

3.3.6 Open Source Considerations

One of the major aspects of our project was to make it replicable by fellow researchers and hobbyists.

This involved writing clean, extensible code and wrapping our dependencies into a Docker container.

We applied a BSD 3-clause license to our work, as this has the most open permissions of the available

open source licenses. We have made our work available through two GitHub repositories, a DockerHub

repository, CAD files, and a website which can all be found in App. D.

4 Results

4.1 Overall Balancing

The goal of the following test is to ensure that the RL model is capable of balancing the TWIP. To

do this we flashed the model on the TWIP, let it rest on its side legs and turned on the motor. The

TWIP would kick up, and we measured the time needed before the TWIP lost stability and reached

13◦. The results of the experiment with various policies can be seen in Fig. 8
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Figure 8: Comparison of policies trained with different initial conditions in simulation when deployed on

the real robot. The standard environment is a naive implementation with only domain randomization.

Random orientations means that the TWIP started with a random angle in simulation, and random

perturbation means that the robot started with a random torque applied to the body.

The robot was capable of balancing for a reasonable period of time with all of the RL models. The

best result comes from only initializing the robot in simulation with only a random torque.

All orientations would eventually destabilize given enough time. This is due to IMU readings drift-

ing over time creating inaccurate readings for pitch.

4.2 Physics in Simulation vs Real

To explore the differences in physics between the simulation in Isaac Gym and reality, we designed tests

that would be both interesting to hobbyists as well as industry professionals and researchers.

Some properties of the robotics platform, such as mass, are simple to measure; domain random-

ization can account for discrepancies between reality and simulation. Other physical properties such

as damping and friction are much harder to measure, making it easy for an estimated range to not

cover the real value. As this is a realistic situation to encounter, we designed tests to characterize the

importance of training with realistic values of damping and friction. It’s important to note that in the

context of physics simulators, velocity control relies on an internal PD controller. Damping determines

the torque output proportional to velocity error, which makes it different from the more common motor

damping coefficient, which is used in effort control.
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To test the importance of accurate friction and damping values we trained various models with values

of damping and friction that were far enough apart that the values would not overlap even with domain

randomization. We tested the TWIP’s performance in two tasks, starting from 0◦ pitch (“Zero”) and

starting from −13◦ pitch (“Kickup”), and then transferred the models to the real robot. If setting

realistic values of these physical parameters in the model is important, we should expect to see that

only one of the models performs similarly in both simulation and reality.

(a) Damping=600, Friction=0 (b) Damping=600, Friction=1

(c) Damping=0.1, Friction=0

Figure 9: Comparison of policies trained with different physical parameters (these parameters were

used during testing). Robot was initialized with zero pitch and no torque perturbation. Domain

randomization (0.5 to 1.5 times the value) was enabled during training but disabled for this comparison.
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(a) Damping=600, Friction=0 (b) Damping=600, Friction=1

(c) Damping=0.1, Friction=0

Figure 10: Comparison of policies trained with different physical parameters (these parameters were

used during testing). Robot was initialized with −13◦ pitch and no torque perturbation. Domain

randomization (0.5 to 1.5 times the value) was enabled during training but disabled for this comparison.

With high damping and no friction, the policy was able to reach stability in the steady-state in both

tasks. With high damping and friction, the policy had large oscillations in both tasks. With low damp-

ing and no friction, we observed oscillations in the steady-state in both tasks. The policy was capable

of reaching stability with all tested parameters.

We then performed the same tests in reality, by testing each policy on the real robot.
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(a) Damping=600, Friction=0 (b) Damping=600, Friction=1

(c) Damping=0.1, Friction=0

Figure 11: Comparison of policies trained with different physical parameters, tested on the real robot.

Robot was initialized with zero pitch and no torque perturbation. Pitch measurement contains a bias

of around 2.5◦ which we correct for in the input to the policy.
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(a) Damping=600, Friction=0 (b) Damping=600, Friction=1

(c) Damping=0.1, Friction=0

Figure 12: Comparison of policies trained with different physical parameters, tested on the real robot.

Robot was initialized with −13◦ pitch and no torque perturbation. Pitch measurement contains a bias

of around 2.5◦ which we correct for in the input to the policy.

In the Zero task, all policies performed poorly when compared to simulation. The policy trained with

high damping and friction performed the worst, losing stability after about 10 seconds. The other

policies were more stable, but performed worse than in simulation.

In the Kickup task, the policy with high damping and friction and the policy with low damping and

no friction both failed to remain stable after less than 10 seconds. Only the policy with high damping

and no fiction remained stable for a significant period of time.

In all cases, the TWIP stabilized quicker and had less noise in simulation compared to reality. This is

because the model is able to react much more quickly in simulation without additional latency from

IMU readings. Other factors like motor backlash and inherent non-linearities in the motor further

increase the Sim2Real gap.
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Certain values of damping and friction will create models that balance in simulation but not in re-

ality. Overall, the models are still able to balance for short durations of time regardless of the values

that the model are trained on. If high performance is a requirement, some amount of tuning and

measurement of physical parameters is required, but the values do not have to be precise.

5 Conclusions

We designed and assembled a TWIP and made a pipeline for training RL models in IsaacGym, which

we used to transfer models onto the robot. The model was successful at balancing both in simulation

and reality. Using this robotic platform, we ran several tests to explore how different parameters affect

the Sim2Real transfer.

Training in simulation without consideration of reality will likely lead to poor performance in real-

ity as simulations provide overly idealized environments. This is especially true for low-level controllers

that are sensitive to dynamics. Even groups with more resources, such as OpenAI, carefully choose the

problems they solve with RL, focusing on high-level planning instead of low-level control.

Sim2Real is difficult. There are still many considerations we have not accounted for between sim-

ulation and reality, such as motor behaviour, IMU behaviour, latency. We haven’t solved the Sim2Real

problem, but provide methods and tools to bridge the gap. For the Project Lab, our TWIP platform

and our software pipeline will make it easier to develop future projects researching Sim2Real.

6 Recommendations

6.1 High-Level TWIP Planning

We have explored the training of a low-level balancing controller. Future work can investigate high-level

planning using our low-level controller, as defined in Sec. 3.2.1, to execute complex tasks (eg. braking

near obstacles, navigating a room). In simulation, this can be achieved by incorporating the low-level

controller into the physics step, treating it as a distinct module that the high-level planner can rely on.

While the Sim2Real problem necessitates analysis of the dynamics, we must consider whether us-

ing an RL policy for low-level control of a robot like a TWIP is necessary if the same or better result

can be achieved with a PID controller. The benefit of RL is that it can solve problems that are infeasible

by manual design. While verification of the dynamics is important, it is not the end goal; it may be

more interesting and fruitful when working with simple hardware to leave low-level control to familiar

technology and instead explore problems on a higher level.

6.2 Effort Control

Effort control (torque or force control) is commonly used in RL, especially for robots that interact with

humans, since it is safer than position or velocity control (because the actuator will not try to apply

more force than the target). The state-of-the-art in robot motion uses Riemannian Motion Policies or
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geometric fabrics which are acceleration-based policies, making effort control of continued interest to

researchers. [8] However, torque control is typically found only in high-end servo motors. An affordable

option may be the ODrive which can be used with cheap brushless DC motors to achieve torque control

by controlling current.

6.3 Non-TWIP Robots on Gym2Real Platform

The TWIP’s low-level controller is capable of balancing, which is a major milestone for the TWIP as

a robotic platform. While more work can be done to explore high-level planning on the TWIP, other

robots can also be investigated. Our open-source software can be modified to train and transfer models

for other tasks such as air hockey tables given a URDF model and code to interface with hardware.

7 Deliverables

1. CAD files detailing design of TWIP

2. Full bill of materials needed to assemble the robot

3. Assembled robot with RL model flashed to the Jetson Nano

4. Github repository containing code to control the hardware and high level software of the Jetson

Nano

5. Github repository containing code for simulation and training reinforcement learning models

6. Website for hobbyists detailing how to use recreate the robot and model
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Appendix A Two-Wheeled Inverted Pendulum

The TWIP system in Fig. 4 can be analyzed in 2D to simplify the problem. We analyze each component

(body & wheel) separately, we begin with the equation for each Wheel

ẍmw = ff − fx

ÿmw = fN − fy −mwg = 0

Iwψ̈ = −ffr + Tm

Next, the equation for pole/body

ẍpmp = 2fx

ÿpmp = 2fy −mpg = 0

Ipγ̈ = 2fyℓ sin(γ)− 2fxℓ cos(γ) + 2Tm

The relationship between wheel rotation (ψ) and wheel linear displacement (x) is

x = ψr

ẋ = ψ̇r

ẍ = ψ̈r

The center of gravity is displaced as governed by

xp = x− ℓ sin(γ)

yp = ℓ cos(γ)

Taking time derivatives,

ẋp = ẋ− γ̇ℓ cos(γ)

ẍp = ẍ− ℓγ̈ cos(γ) + ℓγ̇2 sin(γ)

ẏp = −γ̇ℓ sin(γ)

ÿp = −ℓγ̈ sin(γ)− ℓγ̇2 cos(γ

Simplifying a little . . .

Ipγ̈ = mpgℓ sin(γ)− ẍpmpℓ cos(γ) + 2Tm

= mpgℓ sin(γ)− (ẍ− ℓγ̈ cos(γ) + ℓγ̇2 sin(γ))mpℓ cos(γ) + 2Tm

Ipγ̈ = 2Tm +mpgℓ sin(γ)− ẍmpℓ cos(γ)

+mpℓ
2γ̈ cos2(γ)−mpℓ

2γ̇2 sin(γ) cos(γ)

Simplifying further . . .

23



Iwψ̈ = −(ẍmw + fx)r + Tm

Iwψ̈ = −(ẍmw +
ẍpmp

2
)r + Tm

Iw
ẍ

r
= −ẍmwr − ẍp

mpr

2
+ Tm

Iw
ẍ

r
= −ẍmwr − (ẍ− ℓγ̈ cos(γ) + ℓγ̇2 sin(γ))

mpr

2
+ Tm

Iwẍ = Tmr − ẍmwr
2 − ẍ

mpr
2

2
− ℓγ̇2 sin(γ)

mpr
2

2
+ ℓγ̈ cos(γ)

mpr
2

2

Iwẍ = Tmr − (mw +
mp

2
)ẍr2 −

[
γ̇2 sin(γ)− γ̈ cos(γ)

] mpℓr
2

2

To understand how the torque Tm is generated, consider the circuit in Fig. 13.

Figure 13: A model for a brushed DC motor

As the motor rotates, a potential (Vb) is induced which is equal to Vb = Keψ̇, where Ke is the emf

constant. The motor torque is equal to T = Kti, where Kt is the motor torque constant. Solving for

the steady state torque,

i =
V − Vb
R

=
V −Keψ̇

R

T = Kt
V −Keψ̇

R

To obtain the torque Tm, damping be considered. The final torque generated is

Tm =
Kt

R
(V −Keψ̇)− bψ̇

Note, it is assumed the moment of inertia of the motor shaft is negligible when compared to the wheel.

Finally, the analysis above results in the following two equations

ẍ =

[
Kt

R
(V −Keψ̇)− bψ̇

]
r −

[
γ̇2 sin(γ)− γ̈ cos(γ)

] mpℓr
2

2[
Iw + (mw +

mp

2
)r2

]

γ̈ =

2

[
Kt

R
(V −Keψ̇)− bψ̇

]
+mpgℓ sin(γ)− ẍmpℓ cos(γ) +mpℓ

2γ̈ cos2(γ)−mpℓ
2γ̇2 sin(γ) cos(γ)

Ip
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Appendix B Madgwick Filter

Madgwick’s filter is used to calculate the quaternion representation of an IMU’s orientation q =[
qw qx qy qz

]
from gyroscope and accelerometer measurements. The filter is a complementary

combination of the orientation derived from angular rate, qω,t and the orientation derived from opti-

mizing an inertial objective function, q∆,t.

qt = γtq∆,t + (1− γt)qω,t (7)

Where γt are the weights at time-step t ranging between 0 and 1. To calculate qω,t, we can numerically

integrate its derivative

q̇ω,t =
1

2
qω,tωt

Where ωt =
[
0 ωx ωy ωz

]
is the tri-axial angular rate measured in the IMU’s frame. The

numerical integration step is simply

qω,t = qt−1 + q̇ω,t∆t (8)

The numerical integration is then

qω,t = qω,t−1 +
1

2
qω,t−1ωt∆t (9)

Finding q∆,t involves an optimization of an objective function f(q,d, s) which aligns a reference

d =
[
0 dx dy dz

]
with a measurement s =

[
0 sx sy sz

]
. For our purposes, the reference

d is chosen to be a normalized accelerometer reading a =
[
0 ax ay az

]
, and the measurement

s is defined to be Earth’s gravitational field g =
[
0 0 0 1

]
in normalized quaternion form. The

objective function is

f(q,d, s) = q∗dq − s (10)

The solution to the optimization problem q can be found by minimizing the objective function using a

gradient descent algorithm.

q∆,t = q∆,t−1 − µt
∇f

||∇f ||
(11)

Where µt is the update rate defined as

µt = α||q̇ω,t||∆t

With α > 1 being a parameter to offset the effects of noise present in the IMU data. The best choice

of γt in the complementary filter Eq. 7 ensures that the divergence of qω,t and the convergence of q∆,t

are equal so as to stabilize the algorithm. This optimal fusion is represented by

(1− γt)β = γt
µt

∆t
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Where
µt

∆t
can be seen as the convergence rate of q∆,t and β can be seen as the divergence rate of

qω,t. For large α, µ becomes large, making q∆,t−1 negligible in Eq. 11, such that

q∆,t ≈ −µt
∇f

||∇f ||
In this approximation, βγt will become negligibly small compared to β, such that

γt ≈
β∆t

µt

Now using Eq. 7 and Eq. 8 with these approximations and the numerical integration for qt, we get

qt = qt−1 +

(
q̇ω,t − β

∇f
||∇f ||

)
∆t (12)

Assuming that (1− γt) ≈ 1.

Appendix C Bill of Materials

The bill of materials used for the design are found in Table 2. The materials were sourced from a

combination of DigiKey, RoboShop, McMaster Carr and Amazon.

Appendix D Website and Repos

Website:

https://jonah-gourlay44.github.io/gym2real/

Gym2Real Repo (Hardware and software platform):

https://github.com/jonah-gourlay44/gym2real

Gym2Real-IsaacGym Repo (Simulation and reinforcement learning):

https://github.com/kevinh42/gym2real_isaacgym

TWIP CAD:

https://cad.onshape.com/documents/430d4af740243dc0e842d2a6/w/42cfe57eb2477e6d1bc0bfd3/

e/bfa82f8828e33e337c029dbe?renderMode=0&uiState=62508753c9046e2c4c613c4c
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Item Category Quantity

MPU-6050 Gyro and Acelerometer SENSOR 1

Lynxmotion 12V 1:26.9 Brushed Motor + Encoder ELEC 2

MD10C R3 - Motor Driver ELEC 2

Ribbon Cable H3CCS-4006G ELEC 1

Fuse Holder BK1-HTJ-606I ELEC 3

Turnigy 1300mAh 3S 30C Lipo Pack ELEC 2

Nylon XT60 Connectors ELEC 2

HE1WPR/12 Terminal Block ELEC 1

94669A104 Standoffs MECH 24

Devantech 125mm Wheel MECH 2

NEMA17 bracket MECH 2

HCL8-12 Jumpers ELEC 1

RA11131121 Switch ELEC 2

Nvidia Jetson Nano Developer Kit CONTROLLER 1

Micro USB to USB Cable CONTROLLER 1

Micro SD Card (30 GB minimum) CONTROLLER 1

2-56 × 5/8 bolt + lock washer + nut MISC 2

2-56 × 1/2 bolt + lock washer + nut MISC 8

M6 × 20 bolt + washer + nut MISC 4

M3 × 8 bolt + lock washer + nut MISC 8

M2.5 × 8 bolt + lock washer + nut MISC 2

Table 2: Bill of materials for the the designed TWIP

27


	Executive Summary
	Introduction
	Background
	Problem and Project Objectives
	Scope and Limitations
	Sponsor

	Discussion
	Planning and Considerations
	Robotics Platform
	Isaac Gym

	Theory
	Low-Level Control vs High-Level Planning
	Reinforcement Learning
	Domain Randomization
	Two-Wheeled Inverted Pendulum
	Real-Time Programming

	Design
	Two-Wheeled Inverted Pendulum
	Sensor Integration
	Hardware Integration
	Software Design
	TWIP-Balancing Policy
	Open Source Considerations


	Results
	Overall Balancing
	Physics in Simulation vs Real

	Conclusions
	Recommendations
	High-Level TWIP Planning
	Effort Control
	Non-TWIP Robots on Gym2Real Platform

	Deliverables
	Two-Wheeled Inverted Pendulum
	Madgwick Filter
	Bill of Materials
	Website and Repos

