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Abstract

A first order scheme for the Euler flow within a channel
containing a disk is implemented and through a refine-
ment study, first order convergence is observed. The
Coandă effect is demonstrated through observations of
the magnitude of the velocity around the disk.

1 Introduction

In fluid dynamics, the movement of a compressible, in-
viscid gas is described well by the Euler equation. These
equations are a simplification of the general Naviar-
Stokes equations and work only as an approximation to
real flows which contain viscosity. In scenarios where
lift is to be modeled, these equations are ideal since
they provide a good model of reality. Channel flows
are a benchmark that are widely used to gain an intu-
itive understanding to various flows. In this project, we
use the deal-ii package to simulate a pipe flow around
a disk. Through these simulations, the Coandă is mod-
eled. This effect is the tendency for a fluid coming from
an opening to follow an adjacent flat or curved region
and thus create a region of low pressure.

2 Background

Using the work of [1] as the basis of for this approach,
the Euler equation for a compressible fluid is

∂u

∂t
+∇ · f(u) = 0 (1)

where for a dimension d ≥ 1,

u(x, t) : Rd × R→ Rd+2

f(u) : Rd+2× → Rd+2 × Rd

u = [ρ, m, E]T

f(u) =

 mT

v ⊗m + Ip
vT (E + p)


ρ ∈ R+ is the density, m ∈ Rd the momentum, E ∈ R+

the total energy of the system, v = ρ−1m is the velocity
and p the pressure. Assuming the gas is polytropic and
ideal, the pressure is defined by the equation of state

p(u) = (γ − 1)(E − 1

2
ρ|v|2)

where γ ∈ [1, 5
3 ] is the ratio of the specific heats which

is assumed to be 1.4.
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3 Method

The structure of the implementation of the solution uses
the work of [3] as a foundation. Hyperbolic equations of
the form 1 are difficult to solve due to their non-linearity.
For a solution u to be physical, a constraint can be im-
posed such that any solution must be contained in the
invariant set of Euler’s equations. This set, B, is

B = {u |ρ > 0, E − 1

2
ρ|v|2 > 0, s(u) ≥ min

x
s(u0(x))}

where s is the specific entropy

s(u) = log[
p(u)

ρ
].

This indicates that for the solution to represent a phys-
ical system, there must be a local minimum principle
on the specific entropy in addition to a positive value
for both density and internal energy. Violations of this
constraint leads to non-physical solutions which implies
that any numerical scheme must satisfy this constraint.
Due to the success of finite-difference and finite volume
schemes, a similar scheme is implemented such that the
pointwise constraint is satisfied

∀xi ∈ Ω, uh(xi, t) ∈ B.

The scheme solves uh =
∑

i Uiφi using

mi
Un+1

i −Un
i

∆t
+
∑
j∈I(i)

f(Un
j ) · cij −

∑
j∈I(i)

dij(U
n
j ) = 0.

Where mi =
∫

Ω φidx is the mass matrix, cij =∫
Ω∇φjφidx the flux, I(i) contains all nonzero column

indices of cij for row index i and

dij = max{λmax(Un
i ,U

n
j ,nij), λmax(Un

j ,U
n
i ,nji)}‖cij‖

dii = −
∑

j∈I(i)|i

dij

is the local viscosity where nij =
cij
‖cij‖

and λmax is

the maximum local wavespeed as defined in [2] which

is computed using a Riemann solver. For the boundary
conditions, an inflow and outflow condition are specified
on the left and right sides while the no slip condition is
enforced on the top and bottom surfaces of the domain.
The CFL condition is maintained for

∆tn = ccfl min
i∈V

(
mi

−2 dnii

)
,

where ccfl is taken to be 0.8.

4 Results

To test performance of this scheme a refinement study
is conducted and the forces on a disk submerged in the
fluid are observed. For the refinement study a channel
of length 4 and height 2 is used. The disk is placed at
the origin with a diameter of 0.5, the left side of the do-
main is a distance of 0.6 from the center of the the disk.
During refinement each cell within the mesh 1 is split
into two. The values for density are calculated at vari-

Figure 1: Initial mesh used in the refinement study. This
mesh is composed of three separate rectangles.

ous points and compared across the refined meshes. The
mesh 2, created after N = 5 divisions of the grid, is con-
sidered to be the ground truth. The error is calculated
as

EN = |ρN (x)− ρ5(x)|
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Figure 2: The final mesh used in the refinement study.
This is generated by splitting each cell in 1 into 2 five
times.

for N < 5. A uniform flow in the x direction with a value
of 1 is used throughout the experiment. The initial con-
ditions are set uniformly with a value of 1.4 for initial
density, 3 for the initial velocity, 1 for the pressure. The
total run time for the simulation is three seconds. The
log of the inverse error is plotted below to show conver-
gence.

From figures 3, 4 and 5 first order convergence is ob-
served. This pattern is seen for most points in the mesh
but positions in front of the disk at a distance less than
-0.45 in the x direction deviated from this convergence.
Figure 6 shows that a finer mesh is needed to observe
convergence.

To demonstrate the Coandă result, the flow in time is
plotted. Due to the symmetry of the flow a net torque
of zero is observed as the forces balanced out on the
top and bottom. In reality, asymmetry would lead to
a non-zero net torque. The effect is clearly visible due
to the velocity gradient between the sides and front of
the disk. This indicates that the flow is slowing down
as it curves around the disk. Snapshots of this effect at
various times are plotted.

From figures 7 to 13, the curvature of the flow follows the
curvature of the disk. A splitting effect is observed at the

Figure 3: Refinement study for the point (−0.3, 0) which
is in front of the disk. First order convergence is ob-
served as the number of grid points increased.
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Figure 4: Refinement study for the point (0.3, 0) which
is located behind the disk. First order convergence is
observed as the number of grid points increased. The
convergence here is not as clean as the 4.

Figure 5: Refinement study for the point (2, 0) which is
located far behind the disk. First order convergence is
observed as the number of grid points increased.
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Figure 6: Refinement study for the point (−0.45, 0)
which is located in front of the disk. Points at and
further (more negative) than this point lacked the first
order convergence.

Figure 7: Velocity magnitude plot for the flow around
the disk for mesh 2. Lighter colors indicate larger inten-
sity.

Figure 8: Velocity magnitude plot for the flow around
the disk for mesh 2. Lighter colors indicate larger inten-
sity.

Figure 9: Velocity magnitude plot for the flow around
the disk for mesh 2. Lighter colors indicate larger inten-
sity.
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Figure 10: Velocity magnitude plot for the flow around
the disk with a diameter of 0.9. Lighter colors indicate
larger intensity.

Figure 11: Velocity magnitude plot for the flow around
the disk with a diameter of 0.9. Lighter colors indicate
larger intensity.

Figure 12: Velocity magnitude plot for the flow around
the disk with a diameter of 0.9. Lighter colors indicate
larger intensity.

Figure 13: Velocity magnitude plot for the flow around
the disk with a diameter of 0.9. Lighter colors indicate
larger intensity.
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front of the disk where impact occurs. From this split
the fluid flows symmetrically around and slows down as
it remains attached to the surface. A speed up is seen
again as the two curves meet back up at the other side.

5 Conclusion

The Coandă effect is observed whenever a fluid encoun-
ters a curved surface. The demonstration of the flow of a
fluid described by the Euler equations around a disk in-
dicates that the flow curves in the same way the Coandă
effect explains. Through refinement studies first order
convergence is observed. Convergence of this order is im-
practical as it requires the use of many grid points and is
computationally intensive. Other practical approaches
exist but this method showcases the interesting qualities
of the Naviar-Stokes model.
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